The Jun N-terminal kinase (JNK) signalling pathway has a key role in tissue remodelling during insect metamorphosis by regulating programmed cell death. However, multiple members of the JNK pathway in Lepidoptera remain uncharacterized. In this study, two key genes of the JNK pathway, BmJun and BmFos, were cloned from the silkworm Bombyx mori, a lepidopteran model insect, and their effects on reproductive development were investigated. BmJun and BmFos encode 239 and 380 amino acids, respectively. Both proteins have typical basic leucine zipper domains and form a BmJUN-BmFOS dimer activator protein to exert transcriptional regulation. During the wandering stage of silkworm development, interference in BmJun expression had no effect on pupation, whereas B. mori vitellogenin (BmVg) expression, which is essential for egg development, was suppressed in the fat body and egg laying was significantly reduced. Additionally, numerous eggs appeared shrivelled and deformed, suggesting that they were nutritionally stunted. Inhibition of the JNK pathway caused abnormal pupal metamorphosis, an increase in shrivelled, unfertilized eggs, a decrease in fat body synthesis, and accumulation of BmVg in the ovaries of female B. mori. The results indicated that BmJUN and BmFOS can form an AP-1 dimer. Interfering with BmJun or inhibiting the phosphorylation of BmJUN leads to a reduction in the synthesis of BmVg in the fat body and its accumulation in the ovaries, thereby affecting the quality and production of the progeny eggs. These findings suggest that regulating Jun in the JNK pathway could be a potential way to inhibit female reproduction in Lepidoptera.
Read full abstract