ABSTRACTSemiparametric reproductive dispersion mixed model (SPRDMM) is a natural extension of the reproductive dispersion model and the semiparametric mixed model. In this paper, we relax the normality assumption of random effects in SPRDMM and use a truncated and centred Dirichlet process prior to specify random effects, and present the Bayesian P-spline to approximate the smoothing unknown function. A hybrid algorithm combining the block Gibbs sampler and the Metropolis–Hastings algorithm is implemented to sample observations from the posterior distribution. Also, we develop Bayesian case deletion influence measure for SPRDMM based on the φ-divergence and present those computationally feasible formulas. Several simulation studies and a real example are presented to illustrate the proposed methodologies.
Read full abstract