Global warming has driven changes in the biology and fitness of organisms that need to adapt to temperatures outside of their optimal range to survive. This study investigated aspects of reproduction and survival of the lady beetle Tenuisvalvae notata (Mulsant) (Coleoptera: Coccinellidae) subjected to temperatures that varied from its optimal (28°C) to a gradual decrease (12, 14, 16, and 18°C) and increase (32, 34, 35, and 36°C) over time at a rate of 1°C/day. Fertility, fecundity, oviposition period, and survival were determined. There was a significant reduction in fertility and fecundity at temperatures below 18°C and above 34°C, whereas survival was reduced only above 34°C. Additionally, we evaluated that fecundity was the lowest when females were kept at low temperature, and when males were kept under high temperature. Therefore, if the T. notata remained for a long period under exposure to temperatures outside the ideal range, then the species could present different reproductive responses for each sex to high and low temperatures. This factor must be considered when releasing natural enemies into an area to understand the effect of temperature on the decline of a local population a few generations after release.