Based on the representation of a modular elliptic function in the form of a combination of simple algebraic formulas that conformally map the area of the velocity hodograph (curved triangle) onto a half-plane, a direct definition of filtration rates in a geophysical bridge is given. For the first time, a family of isotope lines of equal filtration rates was constructed for the inner area of the bridge in the absence of water in the downstream. For special cases, the values of the proposed formulas almost completely coincide with the hydromechanical solution of Masket M. (for 4 cases) and the numerical calculations of Khairullin Z.E. (for 2 cases). The well-known Nelson-Skornyakov F.B. formula for the output filtration rates through the lower face of the jumper, adopted by analogy with the flow outlet from the base of the flatbed into the horizontal drainage, gives an underestimation of the results by up to 45%, and therefore cannot be recommended for practical use.