We establish new properties of inhomogeneous spin q-Whittaker polynomials, which are symmetric polynomials generalizing t=0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$t=0$$\\end{document} Macdonald polynomials. We show that these polynomials are defined in terms of a vertex model, whose weights come not from an R-matrix, as is often the case, but from other intertwining operators of Uq′(sl^2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$U'_q({\\widehat{\\mathfrak {sl}}}_2)$$\\end{document}-modules. Using this construction, we are able to prove a Cauchy-type identity for inhomogeneous spin q-Whittaker polynomials in full generality. Moreover, we are able to characterize spin q-Whittaker polynomials in terms of vanishing at certain points, and we find interpolation analogues of q-Whittaker and elementary symmetric polynomials.