As the prospect of exceeding global temperature targets set forth in the Paris Agreement becomes more likely, methods of climate intervention are increasingly being explored. With this increased interest there is a need for an assessment process to understand the range of impacts across different scenarios against a set of performance goals in order to support policy decisions. The methodology and tools developed for Performance Assessment (PA) for nuclear waste repositories shares many similarities with the needs and requirements for a framework for climate intervention. Using PA, we outline and test an evaluation framework for climate intervention, called Performance Assessment for Climate Intervention (PACI) with a focus on Stratospheric Aerosol Injection (SAI). We define a set of key technical components for the example PACI framework which include identifying performance goals, the extent of the system, and identifying which features, events, and processes are relevant and impactful to calculating model output for the system given the performance goals. Having identified a set of performance goals, the performance of the system, including uncertainty, can then be evaluated against these goals. Using the Geoengineering Large Ensemble (GLENS) scenario, we develop a set of performance goals for monthly temperature, precipitation, drought index, soil water, solar flux, and surface runoff. The assessment assumes that targets may be framed in the context of risk-risk via a risk ratio, or the ratio of the risk of exceeding the performance goal for the SAI scenario against the risk of exceeding the performance goal for the emissions scenario. From regional responses, across multiple climate variables, it is then possible to assess which pathway carries lower risk relative to the goals. The assessment is not comprehensive but rather a demonstration of the evaluation of an SAI scenario. Future work is needed to develop a more complete assessment that would provide additional simulations to cover parametric and aleatory uncertainty and enable a deeper understanding of impacts, informed scenario selection, and allow further refinements to the approach.
Read full abstract