Fish skin mucus is a dynamic external mucosal layer that acts as the first line of defense in the innate immune system. Skin mucus' exudation and composition change severely under stress, making it a valuable biofluid to search for minimally invasive stress markers. This study focused on the skin mucus proteome response to repetitive handling, overcrowding, and hypoxia, using Sparus aurata, an important species in the Mediterranean aquaculture, as a model. Biomarker discovery analysis was performed using label-free shotgun proteomics coupled with bioinformatics to unveil the most predictive proteins for the stressed phenotype. A mean of 2166 proteins were identified at a < 0.2% false discovery rate, from which the differentially abundant proteins (DAPs) were mainly involved in the immune system and protein metabolism. A sparse partial least squares regression analysis revealed a high correlation between DAPs and plasma physiological stress indicators. Feature selection, performed by recursive feature elimination followed by logistic regression analysis of the selected proteins, disclosed 28 candidate biomarkers with values of area under the curve >0.75. These minimally invasive biomarkers could be used in forthcoming species-specific stress management protocols to improve fish welfare and promote farmed fish safety, positive societal outcomes, and business sustainability. SignificanceThe fish skin mucus holds a great promise into fish welfare, as a valuable source of minimally invasive biomarkers for stress assessment. In this shotgun proteomics discovery study, we have identified 28 candidate biomarkers by combining a comprehensive functional analysis of the stress regulated proteome with predictive modeling, supported by a significant correlation (p < 0.01) with physiological stress indicators (cortisol, lactate and glucose). The candidate biomarkers showed a good predictive value in the testing set (AUC > 0.75), paving the way for the next step in their validation by targeted proteomics. An early and timely assessment of fish stressful events, by using minimally invasive biomarkers, as those that can be found in the fish skin mucus, can contribute to promote fish health/welfare in the aquaculture sector and its sustainability. The adoption of preventive and surveillance measures based on proteomics approaches can therefore help to avoid unnecessary adverse outcomes with a negative impact on this primordial food sector.