Network attack and defence games are gradually becoming a new approach through which to study the protection of infrastructure networks such as power grids and transportation networks. Uncertainty factors, such as the subjective decision preferences of attackers and defenders, are not considered in existing attack and defence game studies for infrastructure networks. In this paper, we introduce, respectively, the attacker's and defender's expectation value, rejection value, and hesitation degree of the target, as well as construct an intuitionistic fuzzy goal-based attack and defence game model for infrastructure networks that are based on the maximum connectivity slice size, which is a network performance index. The intuitionistic fuzzy two-player, zero-sum game model is converted into a linear programming problem for solving, and the results are analysed to verify the applicability and feasibility of the model proposed in this paper. Furthermore, different situations, such as single-round games and multi-round repeated games, are also considered. The experimental results show that, when attacking the network, the attacker rarely attacks the nodes with higher importance in the network, but instead pays more attention to the nodes that are not prominent in the network neutrality and median; meanwhile, the defender is more inclined to protect the more important nodes in the network to ensure the normal performance of the network.