As a usual malignant tumor in urinary system, renal cell cancer is regulated by microRNAs (miRNAs). This study revealed the prognostic value and regulatory effect of miR-190a-5p in renal cell cancer patients. A total of 253 renal cell cancer patients were included for prognostic value analysis. The target gene of miR-190a-5p was detected by luciferase reporter assay. Cell Counting Kit-8 analysis and Transwell analysis were performed to explore the proliferation, removal capability, and invasiveness of 786-0 and A498 cells. Prognostic value was calculated by Kaplan-Meier curve and Cox regression analysis. miR-190a-5p was more down-regulated in tumor tissues than in adjacent tissues. Renal cell cancer cases were differed as low and high groups ground on mean miR-190a-5p expression in tumor tissues. Overall survival probability was obviously high in patients with high miR-190a-5p level (log-rank test P = 0.011). Cox regression analysis revealed that miR-190a-5p expression (relative risk (RR) = 1.751, 95% confidence interval (CI) = 1.057-2.900, P = 0.030) and tumor node metastasis stage (RR = 1.719, 95% CI = 1.059-2.792, P = 0.028) were specialty indicators for poor renal cell cancer prognosis. GDF11 was directly targeting miR-190a-5p. Overexpressed miR-190a-5p could reduce the GDF11 expression, proliferation, removal capability, and invasiveness of renal cell cancer 786-0 and A498 cells. Elevated GDF11 could lead to a changeover of proliferation, removal capability, and invasiveness inhibition, which is induced by miR-190a-5p. miR-190a-5p was reduced in renal cell cancer tissues, and predicted worse outcomes of renal cell cancer cases. Overexpressed miR-190a-5p could restrain the proliferation, removal capability, and invasiveness of renal cell cancer cells via suppressing GDF11.