Vitamin D3 (VD3) analogues-containing ointments are known to occasionally cause hypercalcemia in psoriasis patients, and the frequency of hypercalcemia is suggested to vary based on the VD3 analogue used. In this study, to address the differences in calcemic effects of VD3-containing ointments, the calcemic effects of marketed VD3-containing ointments, including calcipotriol (Cal), maxacalcitol (Max), tacalcitol (Tac), calcipotriol/betamethasone dipropionate (Cal/BDP) and maxacalcitol/betamethasone butyrate propionate (Max/BBP) ointments, were evaluated in a rat model of imiquimod-induced dermatitis. The topical application of Tac, Max and Max/BBP ointments, but not Cal and Cal/BDP ointments, to the imiquimod-induced skin lesions significantly induced an increase in the serum calcium level compared with the vaseline-treated group. Calcemic effect of VD3 analogues in rats treated with VD3-containing ointments was analyzed by evaluating the expression of vitamin D receptor target genes, such as Cyp24a1, Trpv5 and CalbindinD28k, in the intestine and kidney. Real-time reverse transcription PCR (RT-PCR) analysis showed that the renal and intestinal Cyp24a1 expressions in the Cal- and Cal/BDP-treated groups were significantly lower than those in the Tac-, Max- and Max/BBP-treated groups, suggesting that systemic exposure of VD3 analogues in the Cal- and Cal/BDP-treated groups were lower than those in the other ointment-treated groups. In addition, the renal Trpv5 and CalbindinD28k expressions, calcium-transporting genes, were increased in the Max- and Max/BBP-treated groups compared with the Cal- and Cal/BDP-treated groups. Thus, because of the low systemic exposure of VD3 analogues, Cal and Cal/BDP ointments have lower calcemic effect than the other VD3-containing ointments in rats with psoriasis-like dermatitis.
Read full abstract