Stimuli-responsive nanocarriers have gained attention in cancer therapy as a promising strategy because of their ability to enhance treatment efficacy and minimize off-target medication effects. This study introduces a novel nanopolymer responsive to pH and near-infrared (NIR) light as an intelligent carrier for delivering bicalutamide (BCT) into cancer cells. For this, the surface of tungsten disulfide (WS2) nanosheets is modified with temperature-responsive (poly(N-vinylcaprolactam)) and pH-sensitive (vinylacetic acid) polymers and then characterized using TGA, FE-SEM, XRD, and FT-IR techniques. Experimental variables including pH (5.56), temperature (25 °C), and contact time (11.02 min) are optimized using response surface methodology (RSM) and central composite design (CCD), yielding an adsorption efficacy of 99.45 %. The RSM-CCD model’s capability is analyzed using the correlation coefficient (R2) and several statistical error functions, including average relative error (ARE), root mean square error (RMSE), hybrid fractional error function (HYBRID), and Chi-square test (χ2). The in vitro drug release procedure is evaluated at different pH levels (5.6 and 7.4) and temperatures (37 and 50 °C). The results showed a maximum BCT release of 87.2 % within 6 h at 50 °C and pH 5.6, compared to 13.3 % at 37 °C and pH 7.4. Moreover, the BCT-loaded carrier demonstrates complete BCT release (100 %) following 10 min of NIR irradiation at pH 5.6. The kinetic data confirm that the best fit belongs to the zero-order model, and the drug release followed the supercase II transport mechanism.
Read full abstract