Methylazide photolysis at 248 nm has been investigated by ionizing photofragments with synchrotron radiation in a photofragmentation translational spectroscopy study. CH3N and N2 were the only observed primary products. The translational energy release suggests a simple bond rupture mechanism forming singlet methylnitrene, 1CH3N, and N2. Thus, these experiments reveal the unimolecular decomposition of this highly unstable species. We explain our observations through a mechanism which is initiated by the isomerization of 1CH3N to a highly internally excited methanimine H2C=NH isomer, which decomposes by 1,1-H2 elimination forming HNC+H2 as well as sequential H-atom loss (N-H followed by C-H bond cleavage), to form HCN. No evidence for dynamics on the triplet manifold of surfaces is found.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access