The analysis and measurement of Wigner time delays can provide detailed information about the electronic environment within and around atomic and molecular systems, with one the key differences being the lack of a long-range potential after a halogen ion undergoes photoionization. In this work, we use relativistic random-phase approximation to calculate the average Wigner delay from the highest occupied subshells of the atomic pairings (2p, 2s in Fluorine, Neon), (3p, 3s in Chlorine, Argon), (4p, 4s, 3d, in Bromine, Krypton), and (5p, 5s, 4d in Iodine, Xenon). The qualitative behaviors of the Wigner delays between the isoelectronic pairings were found to be similar in nature, with the only large differences occurring at photoelectron energies less than 20 eV and around Cooper minima. Interestingly, the relative shift in Wigner time delays between negatively charged halogens and noble gases decreases as atomic mass increases. All atomic pairings show large differences at low energies, with noble gas atoms showing large positive Wigner delays, while negatively charged halogen ions show negative delays. The implications for photoionization studies in halide-containing molecules is also discussed.