MICP (Microbially induced calcite precipitation), an environmentally friendly soil improvement technique, has great potential in ocean engineering due to its ability to promote the precipitation of calcium carbonate through microbial activity to enhance the engineering properties of geomaterials. In this study, piezocone penetration test (CPTU) is used to evaluate the effectiveness of MICP treatment in calcareous sand. The change of physical properties (relative density Dr and total unit weight γt) of MICP treated calcareous sand is investigated by conducting CPTU on the geomaterials prepared in a series of mini calibration chambers (25 cm × 50 cm). Results indicate that CPTU (tip stress, sleeve friction, and porewater pressure) measurements can be used to interpret the physical characteristics of calcareous sand treated with MICP under seawater conditions. Additionally, a relationship between CPTU measurements, physical parameters (relative density Dr and total unit weight γt) of MICP treated calcareous sand is proposed and calibrated. The findings of the research extend the implementation of in-situ testing techniques such as CPTU towards physical property evaluation of bio-treated geomaterials in ocean environment, and demonstrate the potential of scaling up MICP techniques for broader engineering application.
Read full abstract