BackgroundSuaeda australis is one of typical halophyte owing to high levels of salt tolerance. In addition, the bZIP gene family assumes pivotal functions in response to salt stress. However, there are little reports available regarding the bZIP gene family in S. australis.ResultsIn this study, we successfully screened 44 bZIP genes within S. australis genome. Subsequently, we conducted an extensive analysis, encompassing investigations into chromosome location, gene structure, phylogenetic relationship, promoter region, conserved motif, and gene expression profile. The 44 bZIP genes were categorized into 12 distinct groups, exhibiting an uneven distribution among the 9 chromosomes of S. australis chromosomes, but one member (Sau23745) was mapped on unanchored scaffolds. Examination of cis-regulatory elements revealed that bZIP promoters were closely related to anaerobic induction, transcription start, and light responsiveness. Comparative transcriptome analysis between ST1 and ST2 samples identified 2,434 DEGs, which were significantly enriched in some primary biological pathways related to salt response-regulating signaling based on GO and KEGG enrichment analysis. Expression patterns analyses clearly discovered the role of several differently expressed SabZIPs, including Sau08107, Sau08911, Sau11415, Sau16575, and Sau19276, which showed higher expression levels in higher salt concentration than low concentration and a response to salt stress. These expression patterns were corroborated through RT-qPCR analysis. The six differentially expressed SabZIP genes, all localized in the nucleus, exhibited positive regulation involved in the salt stress response. SabZIP14, SabZIP26, and SabZIP36 proteins could bind to the promoter region of downstream salt stress-related genes and activate their expressions.ConclusionsOur findings offer valuable insights into the evolutionary trajectory of the bZIP gene family in S. australis and shed light on their roles in responding to salt stress. In addition to fundamental genomic information, these results would serve as a foundational framework for future investigations into the regulation of salt stress responses in S. australis.
Read full abstract