Pulmonary arterial hypertension (PAH) is a progressive condition that frequently leads to right ventricular (RV) remodeling. Aldosterone promotes vascular and RV remodeling. The upregulation of steroidogenic acute regulatory protein (StAR) stimulates aldosterone synthesis. However, the expression of StAR in the myocardium under PAH conditions remains unknown. To investigate the expression of StAR in the myocardium and its association with RV remodeling in PAH, utilizing spironolactone as a treatment. A PAH model was created using male Sprague-Dawley rats, which received a subcutaneous injection of Sugen5416 (20 mg/kg) and were exposed to hypoxia (10% O2) for 2 weeks, followed by 2 weeks of normoxia. The animals were then divided into two groups, with one group receiving spironolactone (25 mg/kg/day) for an additional 4 weeks, while the other group did not. H9c2 cells were cultured under hypoxic conditions (37 °C, 1% O2, 5% CO2) with or without spironolactone treatment. In the model rats, RV systolic pressure and the Fulton index, both of which increased upon exposure to Sugen5416 and hypoxia, significantly decreased with spironolactone treatment. In H9c2 cells, hypoxic exposure elevated aldosterone levels, while spironolactone treatment significantly suppressed aldosterone production. Suppression of StAR expression in the myocardium via spironolactone contributes to the improvement of RV remodeling in PAH. Spironolactone may offer a valuable therapeutic strategy for RV remodeling in patients with PAH.
Read full abstract