In recent decades, the integrity and security of the ecosystem in the Sanjiang Plain have faced severe challenges due to land reclamation. Understanding the impact of paddy field expansion on regional ecosystem services (ESs), as well as revealing the trade-offs and synergies (TOS) between these services to achieve optimal resource allocation, has become an urgent issue to address. This study employs the InVEST model to map the spatial and temporal dynamics of five key ESs, while the Optimal Parameter Geodetector (OPGD) identifies primary drivers of these changes. Correlation analysis and Geographically Weighted Regression (GWR) reveal intricate TOS among ESs at multiple scales. Additionally, the Partial Least Squares-Structural Equation Model (PLS-SEM) elucidates the direct impacts of paddy field expansion on ESs. The main findings include the following: (1) The paddy field area in the Sanjiang Plain increased from 5775 km2 to 18,773.41 km2 from 1990 to 2020, an increase of 12,998.41 km2 in 40 years. And the area of other land use types has generally decreased. (2) Overall, ESs showed a recovery trend, with carbon storage (CS) and habitat quality (HQ) initially decreasing but later improving, and consistent increases were observed in soil conservation, water yield (WY), and food production (FP). Paddy fields, drylands, forests, and wetlands were the main ES providers, with soil type, topography, and NDVI emerging as the main influencing factors. (3) Distinct correlations among ESs, where CS shows synergies with HQ and SC, while trade-offs are noted between CS and both WY and FP. These TOS demonstrate significant spatial heterogeneity and scale effects across subregions. (4) Paddy field expansion enhances regional SC, WY, and FP, but negatively affects CS and HQ. These insights offer a scientific basis for harmonizing agricultural development with ecological conservation, enriching our understanding of ES interrelationships, and guiding sustainable ecosystem management and policymaking.
Read full abstract