Notch signaling regulates cell fate decisions and has context-dependent tumorigenic or tumor suppressor functions. Although there are several classes of Notch inhibitors, the mechanical force requirement for Notch receptor activation has hindered attempts to generate soluble agonists. To address this problem, we engineered synthetic Notch agonist (SNAG) proteins by tethering affinity-matured Notch ligands to antibodies or cytokines that internalize their targets. This bispecific format enables SNAGs to "pull" on mechanosensitive Notch receptors, triggering their activation in the presence of a desired biomarker. We successfully developed SNAGs targeting six independent surface markers, including the tumor antigens PDL1, CD19, and HER2, and the immunostimulatory receptor CD40. SNAGs targeting CD40 increase expansion of central memory γδ T cells from peripheral blood, highlighting their potential to improve the phenotype and yield of low-abundance T cell subsets. These insights have broad implications for the pharmacological activation of mechanoreceptors and will expand our ability to modulate Notch signaling in biotechnology.
Read full abstract