Magnetic resonance fingerprinting (MRF) can rapidly perform simultaneous imaging of multiple tissue parameters. However, the rapid acquisition schemes used in MRF inevitably introduce aliasing artifacts in the recovered tissue fingerprints, reducing the accuracy of the predicted parameter maps. Current regularized reconstruction methods are based on iterative procedures which are usually time-consuming. In addition, most of the current deep learning-based methods for MRF often lack interpretability owing to the black-box nature, and most deep learning-based methods are not applicable for non-Cartesian scenarios, which limits the practical applications. In this paper, we propose a joint reconstruction model incorporating MRF-physics prior and the data correlation constraint for non-Cartesian MRF reconstruction. To avoid time-consuming iterative procedures, we unroll the reconstruction model into a deep neural network. Specifically, we propose a learned CANDECOMP/PARAFAC (CP) decomposition module to exploit the tensor low-rank priors of high-dimensional MRF data, which avoids computationally burdensome singular value decomposition. Inspired by the MRF-physics, we also propose a Bloch response manifold module to learn the mapping between reconstructed MRF data and the multiple parameter maps. Numerical experiments show that the proposed network can reconstruct high-quality MRF data and multiple parameter maps within significantly reduced computational time.
Read full abstract