Disruption of the estrous cycle affects fertility and reproductive health. Follicular dynamics are key to the regularity of the estrous cycle. We identified a novel lincRNA, HEOE, showing significant upregulation in the ovaries during the estrus phase across various pig breeds. Functional analysis revealed that HEOE is responsive to luteinizing hormone (LH) stimulation, modulating transcriptional suppression and alternative splicing in ovarian granulosa cells (GCs). This leads to increased GC apoptosis and inhibition of proliferation. Mechanistically, HEOE inhibits miR-16 maturation in the nucleus, and sequesters miR-16 in the cytoplasm, thereby collectively reducing miR-16's inhibition on ZMAT3, enhancing the expression of ZMAT3, a key factor in the p53 pathway and alternative splicing, thereby regulating follicular development. This effect was validated in both mice and pig follicles. Persistent overexpression or suppression of HEOE throughout the estrous cycle impairs cycle regularity and reduces litter size. These outcomes are associated with HEOE reduced follicular PGF2α levels and modulation of the cAMP signaling pathway. Our data, combined with public databases, indicate that the high expression of HEOE during the estrus phase is crucial for maintaining the estrous cycle. HEOE is a potential therapeutic target for regulating fertility and ensuring estrous cycle regularity in pigs.
Read full abstract