Medical data analysis is an expanding area of study that holds the promise of transforming the healthcare landscape. The use of available data by researchers gives guidelines to improve health practitioners’ decision-making capacity, thus enhancing patients’ lives. The study looks at using deep learning techniques to predict the onset of osteoporosis from the NHANES 2017–2020 dataset that was preprocessed and arranged into SpineOsteo and FemurOsteo datasets. Two feature selection methods, namely mutual information (MI) and recursive feature elimination (RFE), were applied to sequential deep neural network models, convolutional neural network models, and recurrent neural network models. It can be concluded from the models that the mutual information method achieved higher accuracy than recursive feature elimination, and the MI feature selection CNN model showed better performance by showing 99.15% accuracy for the SpineOsteo dataset and 99.94% classification accuracy for the FemurOsteo dataset. Key findings of this study include family medical history, cases of fractures in patients and parental hip fractures, and regular use of medications like prednisone or cortisone. The research underscores the potential for deep learning in medical data processing, which eventually opens the way for enhanced models for diagnosis and prognosis based on non-image medical data. The implications of the study shall then be important for healthcare providers to be more informed in their decision-making processes for patients’ outcomes.
Read full abstract