Deformable image registration is an essential technique of medical image analysis, which plays important roles in several clinical applications. Existing deep learning-based registration methods have already achieved promising performance for the registrations with small deformations, while it is still challenging to deal with the large deformation registration due to the limits of the image intensity-similarity-based objectivefunction. To achieve the image registration with large-scale deformations, we proposed a multilevel network architecture FCNet to gradually refine the registration results based on semantic feature consistency constraint and flow normalization (FN)strategy. At each level of FCNet, the architecture is mainly composed to a FeaExtractor, a FN module, and a spatial transformation module. FeaExtractor consists of three parallel streams which are used to extract the individual features of fixed and moving images, as well as their joint features, respectively. Using these features, the initial deformation field is estimated, which passes through a FN module to refine the deformation field based on the difference map of deformation filed between two adjacent levels. This allows the FCNet to progressively improve the registration performance. Finally, a spatial transformation module is used to get the warped image based on the deformation field. Moreover, in addition to the image intensity-similarity-based objective function, a semantic-feature consistency constraint is also introduced, which can further promote the alignments by imposing the similarity between the fixed and warped image features. To validate the effectiveness of the proposed method, we compared our method with the state-of-the-art methods on three different datasets. In EMPIRE10 dataset, 20, 3, and 7 fixed and moving 3D computer tomography (CT) image pairs were used for training, validation, and testing respectively; in IXI dataset, atlas to individual image registration task was performed, with 3D MR images of 408, 58, and 115 individuals were used for training, validation, and testing respectively; in the in-house dataset, patient to atlas registration task was implemented, with the 3D MR images of 94, 3, and 15 individuals being training, validation, and testing sets,respectively. The qualitative and quantitative comparison results demonstrated that the proposed method is beneficial for handling large deformation image registration problems, with the DSC and ASSD improved by at least 1.0% and 25.9% on EMPIRE10 dataset. The ablation experiments also verified the effectiveness of the proposed feature combination strategy, feature consistency constraint, and FNmodule. Our proposed FCNet enables multiscale registration from coarse to fine, surpassing existing SOTA registration methods and effectively handling long-range spatial relationships.
Read full abstract