AimsWe sought to reveal the landscape of epithelial cell subpopulations in the human esophageal squamous cell carcinoma microenvironment and investigate their parts on esophageal squamous carcinoma (ESCC) development. BackgroundEpithelial cells play an important role in the occurrence and development of ESCC through multiple mechanisms. While the landscape of epithelial cell subpopulations in ESCC, remains unclear. ObjectiveExploring the role of epithelial cell subpopulations in ESCC progression. MethodsSeurat R package was used for single-cell RNA sequencing (scRNA-seq) data filtering, dimensionality reduction, clustering and differentially expressed genes analysis. Cellmarker database was adopted for cell cluster annotation. Functional enrichment analysis was carried out by Gene Ontology (GO) analysis. InferCNV package was conducted for copy number variation (CNV) of epithelial cell subpopulations in all chromosomal regions. Pseudotime trajectory analysis was implemented for exploring differentiation trajectory of epithelial cells subgroups during the cancer progression. CellChat analysis was used for probing the interactions between epithelial cells and NK/T cells. cellular experiments were performed using Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR), Wound-Healing Assay and transwell. Results11 major cell subpopulations were identified in ESCC and adjunct tissues. Further reclassification of epithelial cells uncovered 4 subpopulations. Enrichment analysis revealed that highly expressed genes in 4 epithelial cell subpopulations were related to cell proliferation, immune response and angiogenesis. CNV analysis found that UBD + epithelial cells and GAS2L3+ epithelial cells had a higher proportion of CNV. Cell differentiation trajectories disclosed that KRT6C+ and GSTA1+ epithelial cells were in an intermediate state of differentiation, while UBD+ and GAS2L3+ epithelial cells are in an end state of differentiation during ESCC progression. Finally, we found that four epithelial cell subpopulations all inhibited NK/T cells through NECTIN2-TIGIT and CLEC2B-KLRB1. Low ATF3 and DDIT3 mRNA expression inhibited ESCC cell migration and invasion. ConclusionHere, we obtained a through epithelial cell atlas of ESCC at single-cell resolution, explored the role of epithelial cell in ESCC progression, and unveiled immunosuppressive signals to NK/T cells in promoting ESCC. Our findings expand the comprehension of epithelial cells and offer a theoretical guidance for future anti-epithelial cell treatment of ESCC.