Exposure to traffic-related air pollutants (TRAPs) has been associated with numerous adverse health effects. TRAP concentrations are highest meters away from major roads, and disproportionately affect minority (i.e., non-white) populations often considered the most vulnerable to TRAP exposure. To demonstrate an improved assessment of on-road emissions and to quantify exposure inequity in this population, we develop and apply a hybrid data fusion approach that utilizes the combined strength of air quality observations and regional/local scale models to estimate air pollution exposures at census block resolution for the entire U.S. We use the regional photochemical grid model CMAQ (Community Multiscale Air Quality) to predict the spatiotemporal impacts at local/regional scales, and the local scale dispersion model, R-LINE (Research LINE source) to estimate concentrations that capture the sharp TRAP gradients from roads. We further apply the Regionalized Air quality Model Performance (RAMP) Hybrid data fusion technique to consider the model's nonhomogeneous, nonlinear performance to not only improve exposure estimates, but also achieve significant model performance improvement. With a R2 of 0.51 for PM2.5 and 0.81 for NO2, the RAMP hybrid method improved R2 by ~0.2 for both pollutants (an increase of up to ~70% for PM2.5 and ~31% NO2). Using the RAMP Hybrid method, we estimate 264,516 [95% confidence interval [CI], 223,506-307,577] premature deaths attributable to PM2.5 from all sources, a ~1% overall decrease in CMAQ-estimated premature mortality compared to RAMP Hybrid, despite increases and decreases in some locations. For NO2, RAMP Hybrid estimates 138,550 [69,275-207,826] premature deaths, a ~19% increase (22,576 [11,288 - 33,864]) compared to CMAQ. Finally, using our RAMP hybrid method to estimate exposure inequity across the U.S., we estimate that Minorities within 100 m from major roads are exposed to up to 15% more PM2.5 and up to 35% more NO2 than their White counterparts.
Read full abstract