Background:Takotsubo syndrome is characterized by transient regional systolic dysfunction, left ventricular (LV) dilatation, and edema, often occurring without obstructive coronary artery disease. The mechanisms underlying this stress-induced condition, especially the role of mechanical dyssynchrony in affecting systolic function, remain poorly understood.Methods:In our study, we evaluated global LV function and mechanical dyssynchrony in 24 Takotsubo patients compared to 20 controls by analyzing pressure-volume loops and time-varying elastance. Additionally, we monitored changes in LV segmental volume and internal flow.Results:Here we show a significant reduction in global myocardial contractility and pronounced mechanical dyssynchrony in Takotsubo syndrome, particularly in the mid and apical LV segments, without disturbances in electrical conduction.Conclusions:Our findings reveal substantial mechanical dyssynchrony in Takotsubo patients, characterized by increased internal flow and a shortened systolic ejection time. This indicates a mechanical basis for the inefficient LV function in Takotsubo syndrome, independent of electrical conduction abnormalities.