Regional heterothermy is a strategy used by marine mammals to maintain a high and stable core body temperature, but its identification needs in situ measurements difficult to set up in extant wild organisms and inapplicable to extinct ones. We have analysed the oxygen isotope composition of bioapatite phosphate (δ18Op) from one permanent tooth and from thirty-six skeletal elements of one adult male harbour seal (Phoca vitulina) from the Baie de Somme (Hauts-de-France, France). We propose that the observed intra-skeletal δ18Op variability reflects tissue temperature heterogeneities typical of the pinniped regional heterothermy strategy. Our δ18Op data indicate that bone hydroxylapatite from harbour seal autopod skeletal elements (metacarpals, metatarsals, and phalanxes) mineralises at a lower temperature than that of the bone from the axial skeleton (e.g. vertebrae, ribs, and girdle bones). The results suggest that it is possible to locate a history of regional heterothermies in amphibious marine vertebrates using the δ18Op values of their mineralised tissues. This enables direct evaluation of the thermophysiology of both modern and fossil Pinnipedia from their skeletons opening perspectives on understanding their thermal adaptation to the marine environment in the fossil record. In addition to thermophysiology, oxygen isotope data from the permanent teeth of Pinnipedia, which are formed during the in utero phase from body fluid of the mother and at a stable temperature, could be valuable for locating the geographical areas inhabited by existing Pinnipedia females during their gestation period.
Read full abstract