Анализируется скоростная чувствительность семейства диаграмм деформирования, порождаемых физически линейным определяющим соотношением вязкоупругости Больцмана-Вольтерры с произвольной функцией релаксации в одноосных испытаниях с постоянными скоростями деформации. Выведено общее выражение для показателя скоростной чувствительности (скоростного упрочнения) и аналитически исследованы его общие качественные свойства: зависимость от деформации, скорости деформации и характеристик функции релаксации, диапазон значений, интервалы монотонности и существование точек экстремума, предельные значения при стремлении скорости деформации к нулю или бесконечности, способы определения по диаграммам деформирования или по кривым релаксации. Установлено, что (в рамках линейной теории вязкоупругости) этот показатель зависит не от двух независимых аргументов (деформации и скорости деформации), а только от их отношения, что он выражается через отношение касательного модуля к секущему и может быть вычислен по одной диаграмме деформирования с произвольной скоростью деформации, и что по заданной (или измеренной в испытаниях) функции скоростной чувствительности можно однозначно восстановить функцию релаксации. Доказано, что значения показателя скоростной чувствительности всегда лежат в интервале от нуля до единицы (т.е. линейное определяющее соотношение описывает только псевдопластические среды и не может описывать дилатантные) и могут быть сколь угодно близки к единице (верхней границе для псевдопластических сред), что как функция скорости он не только может монотонно возрастать или убывать, но может иметь точки экстремума, в частности точку максимума (при малообременительных ограничениях на функцию релаксации). Тем самым обнаружена неожиданная способность линейной теории вязкоупругости не только порождать семейство диаграмм деформирования с выраженными участками течения при практически постоянном напряжении, но и качественно описывать «сигмоидальную» форму зависимости напряжения от скорости деформации (в логарифмических осях) и очень высокую скоростную чувствительность, характерные для режима сверхпластического деформирования материалов. Установленные свойства показателя скоростной чувствительности и его характерные особенности проиллюстрированы на примерах классических регулярных, сингулярных и фрактальных моделей вязкоупругости (Максвелла, Фойгта, Кельвина, Зенера, Бюргерса, Скотт-Блэра) и их параллельных соединений.