The present work determines the synthesis of cerium loaded silicon dioxide (Ce-SiO2/rGO) nanocomposite by using reflux method. The Ce-SiO2/rGO was confirmed by using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive (EDAX) techniques. In photodecomposition investigation, Rose Bengal (RB) dye was degraded efficiently using Ce-SiO2/rGO nanocomposite (95 %) at 150 min with follows first order kinetics. The antioxidant property against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was found to be 98 % performance with IC50 value of 488.35 mg/mL. The super capacitance value of Ce-SiO2/rGO was increased compared to that of rGO, SiO2 and SiO2/rGO respectively. The electrochemical reversibility (EO−ER) and diffusion coefficient (D) values were determined using 1 M KCl by cyclic voltammetry method. Ce-SiO2/rGO nanocomposite was used as an electrochemical sensor to detect bee pollen and cow urine. The produced material has superior dye purification, redox behavior, bio-molecule detection, and antioxidative capabilities.
Read full abstract