Industrial effluents are a leading major threat for water contamination, subsequently which results in severe health associated risks. Hence, purifying wastewater before releasing into the water resources is essential to avoid contamination. In this study, ZnO/Cu-DPA nano-composites were prepared by altering the percentage of Cu-DPA (20%, 30%, 40%, and 50% which are denoted to be ZnO/20%Cu-DPA, ZnO/30%Cu-DPA, ZnO/40%Cu-DPA and ZnO/50%Cu-DPA) using a simple mechanical grinding process. Several spectroscopic studies were employed such as electron paramagnetic analysis (EPR), powdered X-ray diffractometer (PXRD), UV–Vis absorbance spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope to characterize these nano-composites. The photo-catalytic activities of the prepared nano-composites were studied by degrading MB under visible light irradiation. ZnO, ZnO/20%Cu-DPA, ZnO/30%Cu-DPA, ZnO/40%Cu-DPA and ZnO/50%Cu-DPA degradation efficiencies were determined to be 71.8, 78.5, 77.1, and 66.1%, respectively. Among the composite catalysts, the ZnO/20%Cu-DPA coupled system are demonstrated the best efficiency (87%) for photo-degradation of MB within 80 min when exposed to visible light. The ZnO/Cu-DPA nano-composites had a greater MB photodegradation efficiency than pristine ZnO owing to p-n heterojunction in the linked system. Under visible light irradiation, the ZnO/20%Cu-DPA catalysed the conversion of dissolved O2 to hydroxyl radicals (OH·), triggering the reduction of MB. This suggests that ·OH is the primary specific active radical involved in the photo-catalytic decomposition of MB. Furthermore, EPR analysis indicates the existence of ·OH in the photo-catalytic system. The proposed nano-composites (ZnO/20%Cu-DPA) reusability was investigated across three cycles as the most efficient photo-catalyst. The results show that, the ZnO/Cu-DPA nano-catalyst is a potential candidate for the remediation of dirty water.