Yu Liu, Zhengyang Zhang, Yongting Luo, Peng An, Jingyi Qi, Xu Zhang, Shuaishuai Zhou, Yongzhi Li, Chong Xu, Junjie Luo, and Jiaping Wang. Product of traditional Chinese medicine longgui yangxinwan protects the human body from altitude sickness damage by reducing oxidative stress and preventing mitochondrial dysfunction. High Alt Med Biol. 00:00-00, 2024. Background: Plateau reaction, caused by high-altitude exposure, results in symptoms like headaches, dyspnea, palpitations, fatigue, shortness of breath, and insomnia due to reduced oxygen levels. Mitochondria are crucial for high-altitude acclimatization as they regulate oxygen metabolism and cellular energy, reducing oxidative stress and maintaining bodily functions. Methods: The study participants were randomly divided into placebo group, Rhodiola group and longgui yangxinwan (Original name: taikong yangxinwan) group, with 20 people in each group. Three groups of subjects were sampled at three time points (PI: pre-intervention; P-D1: high-altitude day 1; P-D7: high-altitude day 7), and blood pressure, blood oxygen, heart rate, hemoglobin, and red blood cell count were measured. The ATP content, mitochondrial DNA copy number, expression of mitochondria-related genes, reactive oxygen species (ROS), glutathione peroxidase (GSH-PX) and malondialdehyde (MDA) levels, and mitochondrial morphology were measured in blood at each time point. Results: Our study results demonstrate that longgui yangxinwan keeps the selected human physiological indicators stable and prevents mitochondrial dysfunction in the high altitude. Mechanically, longgui yangxinwan decreases the level of ROS in human serum, whereas increases the activity of the antioxidant enzyme GSH-PX. At high-altitude day 1 (P-D1) and high-altitude day 7 (P-D7), ROS in the placebo group were 1.5 and 2.2-fold higher than those of the longgui yangxinwan group, respectively. In addition, longgui yangxinwan enhances ATP production capacity, restores the levels of mitochondrial respiratory chain complexes, and effectively maintains mitochondrial morphology and integrity. At P-D1 and P-D7, the ATP levels in the longgui yangxinwan group were 19-fold and 26-fold higher than those in the placebo group, respectively. Conclusions: Our study highlights longgui yangxinwan as a potential drug for protecting humans from high-altitude damage by reducing oxidative stress and preventing mitochondrial dysfunction.
Read full abstract