Conventional water electrolysis relies on expensive membrane-electrode assemblies and sluggish oxygen evolution reaction (OER) at the anode, which makes the cost of green hydrogen (H2) generation much higher than that of grey H2. Here, we develop an innovative and efficient membrane-free water electrolysis system to overcome these two obstacles simultaneously. This system utilizes the thermodynamically more favorable urea oxidation reaction (UOR) to generate clean N2 over a new class of Cu-based catalyst (CuXO) for replacing OER, fundamentally eliminating the explosion risk of H2 and O2 mixing while removing the need for membranes. Notably, this membrane-free electrolysis system exhibits the highest H2 Faradaic efficiency among reported membrane-free electrolysis work. In situ spectroscopic studies reveal that the new N2Hy intermediate-mediated UOR mechanism on the CuXO catalyst ensures its unique N2 selectivity and OER inertness. More importantly, an industrial-type membrane-free water electrolyser (MFE) based on this system successfully reduces electricity consumption to only 3.78 kWh Nm-3, significantly lower than the 5.17 kWh Nm-3 of commercial alkaline water electrolyzers (AWE). Comprehensive techno-economic analysis (TEA) suggests that the membrane-free design and reduced electricity input of the MFE plants reduce the green H2 production cost to US$1.81 kg-1, which is lower than those of grey H2 while meeting the technical target (US$2.00-2.50 kg-1) set by European Commission and United States Department of Energy.
Read full abstract