Wildfires are natural and ubiquitous disturbances in boreal forests. Assessing their impacts on tree growth and resilience are particularly important to recognize the adaptation strategies of fire-tolerant species and forest succession in fire conditions. To date, the growth resilience of fire-tolerant species in boreal forests remains largely unquantified, and the drivers of resilience are poorly understood. Here, we measured the tree-ring widths of 99 fire-scarred trees from three sites in natural Dahurian larch (Larix gmelinii) forests. Three moderate-severity fire events in years 1987, 1990, and 2000 occurring at three sites were detected from the records of local forestry bureau. Based on tree-ring width data, we calculated resilience components (i.e., resistance, recovery, resilience and relative resilience) to quantify the responses of growth resilience in the larch trees to fires and analyzed their drivers at three sites. Results indicated that fires significantly reduced the tree growth. With the increasing tree age, these reductions were more pronounced. As for resilience components, our study showed a limited resistance but high recovery of tree growth against fires, and resistance tended to increase northwards but recovery showed the opposite, suggesting a growth-survival tradeoff was exhibited in Dahurian larch trees. With an increasing tree age, regional resistance and resilience showed a decreasing trend, whereas recovery and relative resilience showed an increasing trend. Resilience components were mainly affected by the climatic factors in spring. An increase in moisture availability enhanced resistance, a reduction in diurnal temperature range enhanced recovery, and an increase in mean temperature enhanced resilience and relative resilience. This study reveals that Dahurian larch could be even less favorable when faced with moderate or severe fire events, but a high capacity of recovery enables this species to adapt to the fire-prone condition. Moreover, this work highlights that the resilience of tree growth should be considered to understand tree behaviors and survival strategies of boreal forests following fires across fire-prone regions under future climate warming.
Read full abstract