This study aimed to assess the impact of nutritional conditions and irradiation parameters on the viability and proliferation of murine preosteoblasts. MC3T3-E1 cells were maintained under standard culture conditions (αMEM supplemented with 10% fetal bovine serum) or nutritional deficit conditions (αMEM without serum) and irradiated or not (control) with an InGaAlP diode laser at wavelengths of 660nm (red) or 790nm (infrared), with doses of 1, 4, or 6J/cm², in a single dose in continuous mode. Cell viability and proliferation were assessed 24, 48, and 72h after irradiation using the Alamar blue reduction assay. The cell cycle and events related to cell death were evaluated via propidium iodide (PI) staining and Annexin V/PI assays, respectively, through flow cytometry. The data revealed that in cells cultured with normal nutrition (10% FBS), there was no significant difference (p > 0.05) in cell viability or proliferation among the different irradiation protocols. In contrast, in the experiments conducted under nutritional deficiency, the infrared laser at a dose of 6J/cm² significantly increased (p < 0.05) cell viability and proliferation compared with those of the control group at 72h. The data were confirmed by cell cycle and cell death events (Annexin V/PI) assays. These results suggest that in vitro PBM yields more consistent biostimulatory effects on pre-osteoblasts subjected to nutritional deficiency, highlighting the need for attention to simulate these conditions in studies with laser therapy in in vitro bone disease models and in in vitro experiments using PBM for bone tissue engineering.
Read full abstract