Anesthesia monitors and devices are usually controlled with some combination of dials, keypads, a keyboard, or a touch screen. Thus, anesthesiologists can operate their monitors only when they are physically close to them, and not otherwise task-loaded with sterile procedures such as line or block placement. Voice recognition technology has become commonplace and may offer advantages in anesthesia practice such as reducing surface contamination rates and allowing anesthesiologists to effect changes in monitoring and therapy when they would otherwise presently be unable to do so. We hypothesized that this technology is practicable and that anesthesiologists would consider it useful. A novel voice-driven prototype controller was designed for the GE Solar 8000M anesthesia patient monitor. The apparatus was implemented using a Raspberry Pi 4 single-board computer, an external conference audio device, a Google Cloud Speech-to-Text platform, and a modified Solar controller to effect commands. Fifty anesthesia providers tested the prototype. Evaluations and surveys were completed in a nonclinical environment to avoid any ethical or safety concerns regarding the use of the device in direct patient care. All anesthesiologists sampled were fluent English speakers; many with inflections from their first language or national origin, reflecting diversity in the population of practicing anesthesiologists. The prototype was uniformly well-received by anesthesiologists. Ease-of-use, usefulness, and effectiveness were assessed on a Likert scale with means of 9.96, 7.22, and 8.48 of 10, respectively. No population cofactors were associated with these results. Advancing level of training (eg, nonattending versus attending) was not correlated with any preference. Accent of country or region was not correlated with any preference. Vocal pitch register did not correlate with any preference. Statistical analyses were performed with analysis of variance and the unpaired t -test. The use of voice recognition to control operating room monitors was well-received anesthesia providers. Additional commands are easily implemented on the prototype controller. No adverse relationship was found between acceptability and level of anesthesia experience, pitch of voice, or presence of accent. Voice recognition is a promising method of controlling anesthesia monitors and devices that could potentially increase usability and situational awareness in circumstances where the anesthesiologist is otherwise out-of-position or task-loaded.
Read full abstract