Recent proposals are based on classifying memory accesses into private or shared in order to process private accesses more efficiently and reduce coherence overhead. The classification mechanisms previously proposed are either not able to adapt to the dynamic sharing behavior of the applications or require frequent broadcast messages. Additionally, most of these classification approaches assume single-level translation lookaside buffers (TLBs). However, deeper and more efficient TLB hierarchies, such as the ones implemented in current commodity processors, have not been appropriately explored. This paper analyzes accurate classification mechanisms in multilevel TLB hierarchies. In particular, we propose an efficient data classification strategy for systems with distributed shared last-level TLBs. Our approach classifies data accounting for temporal private accesses and constrains TLB-related traffic by issuing unicast messages on first-level TLB misses. When our classification is employed to deactivate coherence for private data in directory-based protocols, it improves the directory efficiency and, consequently, reduces coherence traffic to merely 53.0 percent, on average. Additionally, it avoids some of the overheads of previous classification approaches for purely private TLBs, improving average execution time by nearly 9 percent for large-scale systems.
Read full abstract