Abrupt load changes, structural discrepancies, and parametric uncertainties cause degraded performance of the high-order power systems. This situation creates a problematic endeavor while analyzing the performance of such high-order systems. Hence, a simple and efficient lower-order control methodology can be deployed to sort out the issues related to load frequency control (LFC) in such systems. This study resolves the LFC problem in parametric bounded power systems by developing a worst-case reduced-order generalized active disturbance rejection control (WRGADRC) method. The core concept of the proposed technique entails that a controller will perform well in nominal scenarios if it performs satisfactorily in worst-case conditions. Therefore, an interval system’s worst-case reduced-order model is first obtained from its different uncertain models; the reduced order controller is then designed using the GADRC technique. The proposed scheme is rigorously validated on various parametric bounded minimum and non-minimum phase single-area and multi-area power systems, instilling confidence in its ability to achieve minimum frequency deviation in multiple scenarios. The supremacy of the proposed scheme is highlighted over some well-established control techniques in the literature related to the LFC problem.