The vitamin D receptor (VDR) is associated with antioxidative and anti-inflammatory effects and modulation of the renin-angiotensin-aldosterone system. This study evaluated whether VDR agonist paricalcitol protects renal ischemia-reperfusion (IR) induced tubular injury in rats by evaluating: 1) ATP-dependent tubular Na+ transport; 2) renal redox signaling; 3) renal content of proinflammatory cytokines TNF-α and IL-6; and 4) renal content of renin and angiotensin II receptor type 1 (AT1R). Paricalcitol prevented IR-induced tubular injury, evidenced by the prevention of histopathological changes and renal fibrosis with preservation of the activity of ATP-dependent Na+ transporters in the renal cortex. Paricalcitol decreased renal oxidative stress by reducing NADPH oxidase activity and increasing catalase. Paricalcitol also decreased the renal content of TNF-α, IL-6, and AT1R. The NADPH oxidase inhibitor apocynin did not present additive protection to paricalcitol-induced effects. The protective effects of paricalcitol on tubular injury induced by renal IR may dependent on the modulation of redox and proinflammatory signaling and renal angiotensin II/AT1R signaling.