Fifteen of 23 ATCC strains and 2 of 9 clinical isolates of Xanthomonas maltophilia, all of which grew aerobically on ammonia, but not nitrate, as a sole nitrogen source, reduced nitrate to nitrite. X. maltophilia failed to grow anaerobically on complex medium with or without nitrate, so it is considered an obligate aerobe. Nitrate-reducing strains contained reduced methyl viologen nitrate reductase (MVH-NR) with specific activities ranging from 49.2 to 192 U mg of protein. Strain ATCC 17666 doubled its cell mass after 3 h of growth on nitrate broth under low aeration, possessed maximal MVH-NR activity, and converted the added nitrate to nitrite, which accumulated. Dissolved oxygen above 15% saturation greatly suppressed nitrite formation. All strains, except ATCC 14535, possessed between 0.25 and 5.05 pmol of molybdopterin mg of protein as measured by the Neurospora crassa nit-1 assay. The molybdopterin activity in the soluble fraction sedimented as a single symmetrical peak with an s(20,w) of 5.1. Studies identified MVH-NR in selected strains as a membrane-bound protein. The deoxycholate-solubilized MVH-NR sedimented as a single peak in sucrose density gradients with an s(20,w) of 8.8. The MVH-NR of X. maltophilia has the physical characteristics of a respiratory nitrate reductase and may enable cells to use nitrate as an electron sink under semiaerobic conditions.
Read full abstract