Since the future output of wind power generation is uncertain due to weather conditions, there is an increasing need to manage the risks associated with wind power businesses, which have been increasingly implemented in recent years. This study introduces multiple weather derivatives of wind speed and temperature and examines their effectiveness in reducing (hedging) the fluctuation risk of future cash flows attributed to wind power generation. Given the diversification of hedgers and hedging needs, we propose new standardized derivatives with higher-order monomial payoff functions, such as “wind speed cubic derivatives” and “wind speed and temperature cross-derivatives,” to minimize the cash flow variance and develop a market-trading scheme to practically use these derivatives in wind power businesses. In particular, while demonstrating the importance of standardizing weather derivatives regarding market liquidity and efficiency, we propose a strategy to narrow down the required number (or volume) of traded instruments and improve trading efficiency by utilizing the least absolute shrinkage and selection operator (LASSO) regression. Empirical analysis reveals that higher-order, multivariate standardized derivatives can not only enhance the out-of-sample hedge effect but also help reduce trading volume. The results suggest that diversification of hedging instruments increases transaction flexibility and helps wind power generators find more efficient portfolios, which can be generalized to risk management practices in other businesses.
Read full abstract