The molecular mechanisms of plant responses to phytophagous insect eggs are poorly understood, despite their importance in insect-plant interactions. This study investigates the plant defense mechanisms triggered by the eggs of whitefly Bemisia tabaci, a globally significant agricultural pest. A transcriptome comparison of tobacco plants with and without eggs revealed that whitefly eggs may activate the response of defense-related genes, including those involved in the salicylic acid (SA) signaling pathway. SA levels are induced by eggs, resulting in a reduction in egg hatching, which suggests that SA plays a key role in plant resistance to whitefly eggs. Employing Agrobacterium-mediated transient expression, virus-induced gene silencing assays, DNA-protein interaction studies, and bioassays, we elucidate the regulatory mechanisms involved. Pathogenesis-related proteins NtPR1-L1 and NtPR5-L2, downstream of the SA pathway, also affect whitefly egg hatching. The SA-regulated transcription factor NtWRKY70a directly binds to the NtPR1-L1 promoter, enhancing its expression. Moreover, NtPR1-L1 promotes callose deposition, which may impede the eggs' access to water and nutrients. This study establishes the SA-WRKY70-PR-callose axis as a key mechanism linking plant responses and defenses against whitefly eggs, providing new insights into the molecular interactions between plants and insect eggs.
Read full abstract