The locomotor behavior of an animal strongly depends on the distribution of its body mass. Whenever changes occur in this distribution, the displacement of the body center of mass (CoM) may lead to a loss of balance. Ants are an interesting biological model to investigate how an animal copes with such changes because, when they transport food, their CoM may be displaced from its usual position. We studied the ant Formica rufa whose diet consists mainly in liquid food, stored in the abdomen, but which also includes prey transported in the mandibles. We investigated the kinematics of locomotion of the same individuals while walking unloaded and while transporting food internally or externally. We found that the kinematics of locomotion slightly differed in the two types of transport. Ants transporting food in their mandibles adopted a more erect posture and tended to be more often in static instability than ants transporting food internally. In addition, the amplitude of the vertical oscillations of their CoM was higher, which led to a jerky locomotion. However, due to their erect position, the position of their overall CoM was actually not different from that of unloaded ants. Finally, the mechanical work achieved by ants to rise and accelerate their CoM was smaller in ants transporting food internally than in ants transporting food externally or in unloaded ants. This suggests that the morphology of F. rufa could make the transport of food in the gaster more mechanically efficient than the transport of food in the mandibles.
Read full abstract