Introduction Antivenom is first line treatment for snake envenomation worldwide, despite few placebo controlled clinical trials demonstrating effectiveness. We aimed to investigate whether early antivenom in red-bellied black snake (Pseudechis porphyriacus) bites would prevent systemic myotoxicity. Methods We undertook a multicentre randomized placebo-controlled trial of antivenom for red-bellied black snake bites with patients recruited from the Australian Snakebite Project (July 2014 to June 2020). In addition, we report all patients with red-bellied black snake bites during the same period, comparing the same outcomes. Patients over 2 years of age with definite red-bellied black snake bites and early systemic effects were randomized to receive 50 per cent glucose (placebo) or tiger snake antivenom within 6 hours post-bite, or in the cohort group received antivenom determined by the treating clinician. The primary outcome was the proportion of patients with myotoxicity (peak creatine kinase activity >1,000 U/L). Secondary outcomes were: area under the curve of total creatine kinase elevation over 48 hours, presence of venom post-antivenom, and adverse reactions. We analyzed both the randomized control trial patients and the combination of randomized control trial and cohort patients. Results Fifteen patients were recruited to the randomized controlled trial, and a cohort of 68 patients who were not randomized were included in the analysis. After treatment, two of seven patients given placebo had a peak creatine kinase activity >1,000 U/L versus none of the eight given antivenom (difference in favour of antivenom; 29 per cent; 95 per cent confidence interval:-18 per cent to +70 per cent; P = 0.2). The median area under the curve of total creatine kinase elevation over 48 hours in patients given placebo was 0 U/L*h (interquartile range: 0–124 U/L*h), which was not significantly different to those given antivenom: 197 U/L*h (interquartile range: 0–66,353 U/L*h; P = 0.26). Venom was not detected post-antivenom in six patients with measured venom concentrations given antivenom. Two patients given antivenom had immediate hypersensitivity reactions, one severe anaphylaxis, and another had serum sickness. Combining randomized and not randomized patients, three of 36 (8 per cent) administered antivenom less than 6 hours post-bite had a peak creatine kinase activity >1,000 U/L versus 17/47 (36 per cent) patients not receiving antivenom less than 6 hours post-bite (difference in favour of antivenom 29 per cent; 95 per cent confidence interval: 8 per cent to 44 per cent; P < 0.004). Overall, 13/36 (36 per cent) patients administered antivenom within 6 hours had hypersensitivity reactions, six severe anaphylaxis (17 per cent). Discussion We found that early antivenom was effective in red-bellied black snake bites, and only three patients need to be given antivenom within 6 hours to prevent myotoxicity in one (number needed to treat = 3). However, one in three patients administered antivenom developed a hypersensitivity reaction, and one in six had severe anaphylaxis. The major limitation of this study was the small number of patients recruited to the randomized controlled trial. Conclusion Administration of antivenom in red-bellied black snake envenomation within 6 hours post-bite appeared to decrease the proportion of patients with myotoxicity, but a third of patients had adverse reactions.