Rabbit breeds in Egypt are local and adapted foreign breeds that have been imported since the middle of the last century. Stressful environmental conditions including climatic changes, exposure to diseases and breeding selection have an influence on how gene flow has shaped the genetic diversity of the breeds. Mitochondrial DNA D-loop is a genetic marker used to trace the geographic distribution of genetic variation for the investigation of expansions, migrations and other gene flow patterns. The study aimed to determine the genetic diversity of the mitochondrial DNA D-loop (mtDNA D-loop) in Black Baladi, Red Baladi, Gabali, APRI line and New Zealand breeds to gather the scientific data required to create a proper conservation and sustainable management plan. Blood samples were taken from animals unrelated to each other. A 332-bp of mtDNA D-loop was successfully amplified and alignment sequences were deposited in the GenBank database. The results detected six haplotypes in the five breeds. Haplotype diversity within individual breeds varied from 0 (Red Baladi) to 0.551±0.114 (Gabali). The nucleotide diversity (π) value was relatively low (0.001-0.006), with greater values in APRI and New Zealand. Pairwise distances between breeds yielded varying values ranging from 0 to 0.254, and the values between the Red Baladi and other breeds were comparatively high, with pairwise distances from 0.172 to 0.254. The phylogenetic analysis involved 74 nucleotide sequences of the Egyptian rabbit and thirty-one sequences retrieved from GenBank of the reference samples of different haplogroups. The results of the phylogenetic analysis correlated to the reference mtDNA GenBank database showed that the five Egyptian rabbit breeds were grouped into haplotypes A, B and K. The results of the genetic diversity using mtDNA shed light on the importance of the local breed’s genetic diversity information and revealed unique mtDNA haplotypes, which is an important finding for breeding strategies designed to conserve genetic variants and provide sustainable management.
Read full abstract