Several studies have developed dynamical models to understand the underlying mechanisms of insulin signaling, a signaling cascade that leads to the translocation of glucose, the human body’s main source of energy. Fortunately, reaction network analysis allows us to extract properties of dynamical systems without depending on their model parameter values. This study focuses on the comparison of insulin signaling in healthy state (INSMS or INSulin Metabolic Signaling) and in type 2 diabetes (INRES or INsulin RESistance) using reaction network analysis. The analysis uses network decomposition to identify the different subsystems involved in insulin signaling (e.g., insulin receptor binding and recycling, GLUT4 translocation, and ERK signaling pathway, among others). Furthermore, results show that INSMS and INRES are similar with respect to some network, structo-kinetic, and kinetic properties. Their differences, however, provide insights into what happens when insulin resistance occurs. First, the variation in the number of species involved in INSMS and INRES suggests that when irregularities occur in the insulin signaling pathway, other complexes (and, hence, other processes) get involved, characterizing insulin resistance. Second, the loss of concordance exhibited by INRES suggests less restrictive interplay between the species involved in insulin signaling, leading to unusual activities in the signaling cascade. Lastly, GLUT4 losing its absolute concentration robustness in INRES may signify that the transporter has lost its reliability in shuttling glucose to the cell, inhibiting efficient cellular energy production. This study also suggests possible applications of the equilibria parametrization and network decomposition, resulting from the analysis, to potentially establish absolute concentration robustness in a species.
Read full abstract