In the development of automated manipulators for fruit and vegetable picking technologies, the challenge of ensuring an efficient, stable, and loss-free picking process has been a complex problem. In such an environment, manipulators require the most efficient and robust control for effective operations. In this paper, a serial 9-DOF redundant manipulator (1P8R) is proposed with various controllers for trajectory tracking problems in agricultural applications. The dynamic analysis of redundant manipulator has been carried out using the Recursive Newton-Euler method. The joint configurations of the robot are determined using optimization techniques for specific Task Space Locations (TSLs) by avoiding obstacles. The process of generating joint trajectories has been implemented by considering the cubic polynomial function. For the task of controlling the robot trajectory tracking in the virtual agricultural environment, different combinations of Proportional (P), Integrative (I), Derivative (D), and Feed-Forward (FF) controllers are employed, and a comparative analysis has been performed among these controllers. To verify the performance of the manipulator, simulations are carried out in a virtual environment using Simulink software. Results show that the robot is able to reach specific TSL accurately with better control and it is found that the implementation of Feed-Forward and PID-CTC controllers has better performance in a complex environment.
Read full abstract