In recent years, spiking neural networks were introduced in science as the third generation of artificial neural networks leading to a tremendous energy saving on neuromorphic processors. This sustainable effect is due to the sparse nature of signal processing in-between spiking neurons leading to much less scalar multiplications as in second-generation networks. The spiking neuron’s efficiency is even more pronounced by their inherently recurrent nature being useful for recursive function approximations. We believe that there is a need for a general regression framework for SNNs to explore the high potential of neuromorphic computations. However, besides many classification studies with SNNs in the literature, nonlinear neuromorphic regression analysis represents a gap in research. Hence, we propose a general SNN approach for function approximation applicable for complex transient signal processing taking surrogate gradients due to the discontinuous spike representation into account. However, to pay attention to the need for high memory access during deep SNN network communications, additional spiking Legrendre Memory Units are introduced in the neuromorphic architecture. Path-dependencies and evolutions of signals can be tackled in this way. Furthermore, interfaces between real physical and binary spiking values are necessary. Following this intention, a hybrid approach is introduced, exhibiting an autoencoding strategy between dense and spiking layers. However, to verify the presented framework of nonlinear regression for a wide spectrum of scientific purposes, we see the need for obtaining realistic complex transient short-time signals by an extensive experimental set-up. Hence, a measurement technique for benchmark experiments is proposed with high-frequency oscillations measured by capacitive and piezoelectric sensors resulting in wave propagations and inelastic solid deformations to be predicted by the developed SNN regression analysis. Hence, the proposed nonlinear regression framework can be deployed to a wide range of scientific and technical applications.