Laryngeal cancer resections often require excision of portions of the larynx along with sacrifice of the ipsilateral recurrent laryngeal nerve (RLN). In such cases, there are no reconstructive options that reliably restore laryngeal function, rendering patients with severe functional impairment. To address this unmet clinical need, we extend our evaluation of a 3-implant mucosal, muscle, cartilage reconstruction approach aimed at promoting functional laryngeal restoration in a porcine hemilaryngectomy model with ipsilateral RLN transection. Six Yucatan mini-pigs underwent full-thickness hemilaryngectomies with RLN transection followed by transmural reconstruction using fabricated collagen polymeric mucosal, muscle, and cartilage replacements. To determine the effect of adding therapeutic cell populations, subsets of animals received collagen muscle implants containing motor-endplate-expressing muscle progenitor cells (MEEs) and/or collagen cartilage implants containing adipose stem cell (ASC)-derived chondrocyte-like cells. Acoustic vocalization and laryngeal electromyography (L-EMG) provided functional assessments and histopathological analysis with immunostaining was used to characterize the tissue response. Five of six animals survived the 4-week postoperative period with weight gain, airway maintenance, and audible phonation. No tracheostomy or feeding tube was required. Gross and histological assessments of all animals revealed implant integration and regenerative remodeling of airway mucosa epithelium, muscle, and cartilage in the absence of a material-mediated foreign body reaction or biodegradation. Early voice and L-EMG data were suggestive of positive functional outcomes. Laryngeal reconstruction with collagen polymeric mucosa, muscle, and cartilage replacements may provide effective restoration of function after hemilaryngectomy with RLN transection. Future preclinical studies should focus on long-term functional outcomes. NA Laryngoscope, 134:4604-4613, 2024.