This project focuses on developing an antenna that utilising microwave imaging technology for visualising, detecting, and estimating the size of human tumors using simulation approach. A rectangular microstrip patch antenna is chosen for its advantages of low cost, convenience, efficiency, and compactness, offering a non-ionised alternative. To meet the antenna specifications, rectangular slots are incorporated into the design. The antenna performs effectively at 7.5 GHz, exhibiting a return loss of -24.20383 dB, well below the -10 dB threshold. Placing the antenna 15 mm away from the human brain model results in a specific absorption rate (SAR) value of 0.2 W/kg for 10g, indicating its safety for brain imaging. By scanning a human head phantom with and without a tumor, the antenna captures reflected signals from different locations, enabling the generation of tumour images. A 10-mm-radius tumor is introduced to the phantom, and the unique reflected signal serves as an indicator for tumor detection, using the signal without a tumor as a reference. MATLAB software is employed for image processing, allowing the generation of tumour images and the estimation of tumor size. The simulation results demonstrate 63% accuracy in tumor size estimation. In conclusion, the antenna proves to be a safe and effective brain imaging system for tumor detection.
Read full abstract