AbstractThe traditional ground collision avoidance system (GCAS) makes avoidance decisions based on predicted collision time, without considering the impact of terrain environment and dynamic changes in load factor on avoidance decisions. This increases the risk of ground collisions for the aircraft. To solve the problem, a GCAS with multi-trajectory risk assessment and decision function is proposed. Firstly, a variety of predicted flight avoidance trajectories are established within the final manoeuvering capability of the aircraft. Secondly, for each predicted trajectory, the uncertain length between adjacent prediction points is used to construct a rectangular distance bin, and the terrain data below the avoided trajectory is extracted. Finally, the regret theory is used to establish a multi-attribute avoidance decision model to evaluate and prioritise the risk of collision avoidance trajectories, to provide effective collision avoidance decision for pilots. The algorithm is tested and verified with real digital elevation model and simulated flight data, and compared with traditional GCAS. Simulation results show that the proposed algorithm can comprehensively consider manoeuvering performance and threatening terrain, and provide safe and effective avoidance decisions for pilots.