To meet the needs of future closed fuel cycles, the complete recovery of minor actinides, including neptunium, may be required. Neptunium can be fully recovered by modifications to the Plutonium URanium Extraction (PUREX) process but this requires careful control of the Np(V)-(VI) redox reaction in the first solvent extraction contactor to avoid losses to the highly active aqueous raffinate, as occurs in current reprocessing plants. As part of the on-going development of an Advanced PUREX process we report a series of solvent extraction experiments aimed at optimizing neptunium recovery in a process that is based on centrifugal contactors as the extraction equipment. Suitable experimental conditions for Np(V) oxidation were identified through simple stirred 2-phase experiments and single stage mini-centrifugal contactor experiments. A U/Np-active proof-of-principle flowsheet test in a multi-stage centrifugal contactor cascade then demonstrated > 99% extraction of neptunium, thus suggesting the aims for neptunium recovery in advanced fuel cycles can be met by an Advanced PUREX process.
Read full abstract